Field Characteristic & Prime Subfield


Def. $\text{ch}(F)$ = the smallest (necc. prime) pos integer $p$ such that $p\cdot 1_F = 0$, or $0$ otherwise.  Also makes sense for any ID $R$ & $\text{ch}(R) = \text{ch}(\text{Frac}(R))$.  Examples:
  •  $\text{ch}(\Bbb{R}) = \text{ch}(\Bbb{Q}) = \text{ch}(\Bbb{Z}) = 0$
  •  $\Bbb{F}_p = \Bbb{Z}/(p) \implies \text{ch}(\Bbb{F}_p) = p$
  • $\text{ch}(\Bbb{F}_p[X])  = p$
There is a ring hom $\Bbb{Z} \xrightarrow{\varphi} F, n \mapsto \begin{cases} n \cdot 1_F, \text{ if } n \geq 0 \\ -(n\cdot 1_F), \text{ if } n \lt 0\end{cases}$, such that $\ker \varphi = \text{ch}(F) \Bbb{Z}$.

So $\Bbb{Z}/\text{ch}(F)\Bbb{Z} \rightarrowtail F$ is an injection & $F$ either contains an isomorphic copy of $\Bbb{Q}$ or $\Bbb{F}_p$.

Def. $\text{Prime}(F) =$ the smallest subfield of $F$ containing $1_F =$ subfield generated by $1_F$.  $\text{Prime}(F) = \Bbb{Q}$ or $\Bbb{F}_p$.  Examples:
  • $\text{Prime}(\Bbb{R}) = \Bbb{Q}$
  • $\text{Prime}(\Bbb{F}_p(X)) \simeq \Bbb{F}_p$ given by constant polynomials in $\Bbb{F}_p[X]$

Comments

Popular posts from this blog

Every Map $X \xrightarrow{f} \Omega$ is the Characteristic Map of a Monomorphism

Elementary counting formula for the number of $2k$-separated prime pair averages in an interval.

90% visual proof of Contravariant Yoneda Lemma